Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Panel
panelIconIdatlassian-note
panelIcon:note:
bgColor#DEEBFF

Note

  • From Kyvos 2024.10 onwards, you can view the user list, group list, or both in the access right dialog box while sharing an entity with other users or groups.

  • Refer to the File sources supported for creating relationships and semantic models section to learn more about the sources from where you can pick files for the relationship.

  • If the  ALLOW_ENTITIES_ON_ROOT  property property is set to  to Yes, the New  option option is displayed, which is used to add any Kyvos entity to the Root folder. The New option is displayed beside the  Quick Data Modelling  option. Conversely, if it is set to No, you cannot add any Kyvos entity to the Root folder, and the New  option option to add the folder is not displayed. 

...

Aura tab collection
paramsJTdCJTIyZ2VuZXJhbCUyMiUzQSU3QiUyMnRhYlNwYWNpbmclMjIlM0EwJTJDJTIydGFiV2lkdGglMjIlM0ExMDAlMkMlMjJ0YWJIZWlnaHQlMjIlM0E1MCUyQyUyMmRpcmVjdGlvbiUyMiUzQSUyMmhvcml6b250YWwlMjIlN0QlMkMlMjJjb250ZW50JTIyJTNBJTdCJTIyYmFja2dyb3VuZENvbG9yJTIyJTNBJTdCJTIyY29sb3IlMjIlM0ElMjIlMjNmZmYlMjIlN0QlMkMlMjJib3JkZXIlMjIlM0ElN0IlMjJzdHlsZSUyMiUzQSUyMnNvbGlkJTIyJTJDJTIyd2lkdGglMjIlM0ExJTJDJTIydG9wJTIyJTNBdHJ1ZSUyQyUyMmJvdHRvbSUyMiUzQXRydWUlMkMlMjJsZWZ0JTIyJTNBdHJ1ZSUyQyUyMnJpZ2h0JTIyJTNBdHJ1ZSUyQyUyMmNvbG9yJTIyJTNBJTdCJTIybGlnaHQlMjIlM0ElMjIlMjNjY2NlY2YlMjIlN0QlN0QlMkMlMjJwYWRkaW5nJTIyJTNBJTdCJTIydG9wJTIyJTNBMTAlMkMlMjJyaWdodCUyMiUzQTEwJTJDJTIyYm90dG9tJTIyJTNBMTAlMkMlMjJsZWZ0JTIyJTNBMTAlN0QlN0QlMkMlMjJhY3RpdmUlMjIlM0ElN0IlMjJiYWNrZ3JvdW5kQ29sb3IlMjIlM0ElN0IlMjJjb2xvciUyMiUzQSU3QiUyMmxpZ2h0JTIyJTNBJTIyJTIzZjU4MjI3JTIyJTdEJTdEJTJDJTIydGV4dCUyMiUzQSU3QiUyMmZvbnRTaXplJTIyJTNBMTYlMkMlMjJjb2xvciUyMiUzQSU3QiUyMmxpZ2h0JTIyJTNBJTIyJTIzMDAwMDAwJTIyJTdEJTJDJTIydGV4dEFsaWduJTIyJTNBJTIybGVmdCUyMiUyQyUyMmZvbnRXZWlnaHQlMjIlM0ElMjJib2xkJTIyJTdEJTdEJTJDJTIyaG92ZXIlMjIlM0ElN0IlMjJiYWNrZ3JvdW5kQ29sb3IlMjIlM0ElN0IlMjJjb2xvciUyMiUzQSUyMiUyM2RmZTFlNiUyMiU3RCUyQyUyMnRleHQlMjIlM0ElN0IlMjJmb250U2l6ZSUyMiUzQTE4JTJDJTIyY29sb3IlMjIlM0ElMjIlMjM1ZTZjODQlMjIlMkMlMjJ0ZXh0QWxpZ24lMjIlM0ElMjJsZWZ0JTIyJTJDJTIyZm9udFdlaWdodCUyMiUzQSUyMmxpZ2h0ZXIlMjIlN0QlN0QlMkMlMjJpbmFjdGl2ZSUyMiUzQSU3QiUyMmJhY2tncm91bmRDb2xvciUyMiUzQSU3QiUyMmNvbG9yJTIyJTNBJTIyJTIzZjRmNWY3JTIyJTdEJTJDJTIydGV4dCUyMiUzQSU3QiUyMmZvbnRTaXplJTIyJTNBMTYlMkMlMjJjb2xvciUyMiUzQSUyMiUyMzVlNmM4NCUyMiUyQyUyMnRleHRBbGlnbiUyMiUzQSUyMmxlZnQlMjIlMkMlMjJmb250V2VpZ2h0JTIyJTNBJTIybGlnaHRlciUyMiU3RCUyQyUyMmJvcmRlciUyMiUzQSU3QiUyMnRvcCUyMiUzQXRydWUlMkMlMjJsZWZ0JTIyJTNBdHJ1ZSUyQyUyMnJpZ2h0JTIyJTNBdHJ1ZSUyQyUyMmJvdHRvbSUyMiUzQXRydWUlMkMlMjJ3aWR0aCUyMiUzQTElMkMlMjJzdHlsZSUyMiUzQSUyMnNvbGlkJTIyJTJDJTIyY29sb3IlMjIlM0ElN0IlMjJsaWdodCUyMiUzQSUyMiUyM2NjY2VjZiUyMiU3RCU3RCU3RCU3RA==
Aura tab
summaryDefine Semantics
paramsJTdCJTIydGl0bGUlMjIlM0ElMjJEZWZpbmUlMjBTZW1hbnRpY3MlMjAlMjIlN0Q=

In this process, you add dimensions and measure and types of pre-calculated aggregations.

Parameter/Field

Description and Topic Reference

Dimensions 

dimension is a structure that categorizes facts and measures allowing users to answer business questions. The elements of a dimension can be organized as a  hierarchy - a set of parent-child relationships, where a parent member summarizes its children.  You can  add, name, and rename dimensions, define a hierarchy level, add levels, and set up attributes.

See Adding dimensions for more details. 

Attributes 

You can use dimension attributes as part of your analysis to tease out more information.  See Adding attributes for more details. 

Measures 

Measures represent values that are counted, summarized, or aggregated, such as costs. Aggregating measures allow you to calculate the Sum, Minimum, Maximum, Count, Mean, or Distinct Count for the field data you are aggregating.

See Adding measures for more details 

Calculated Measures 

It is like any existing attribute or user hierarchy member. You can add calculated members  to a hierarchy using hierarchy or attribute properties.

See Adding calculated measures for more details 

Hierarchies and levels

 You can add calculated members to a hierarchy using hierarchy or attribute properties. Hierarchies are a useful option for reducing the complexity between attributes and helping you with drill-down behavior. 
See Defining hierarchies and levels  for more details 

After you have designed the cube, a physical design is displayed in the Refine tab.
See Physical view for more details. 

Semantic Model Design Page 

image-20240702-043609.png
Aura tab
summaryRefine Model
paramsJTdCJTIydGl0bGUlMjIlM0ElMjJSZWZpbmUlMjBNb2RlbCUyMiU3RA==

In this process, you refine the semantic model by defining the partition, aggregation, and auto cache strategies and setting advanced properties.

Parameter/Field

Description and Topic Reference

Physical view 

It is a separate view of a semantic model that lets you make changes over time to tune the performance of a semantic model without losing the business design or logic design of the cube.

As your business generates new data, you can add data to an already-built semantic model with an incremental build. You can also create a sliding window and specify a range of data that you want to build into the semantic model.

You can delete semantic models at any time; however, if there are reports built using the semantic model, they will no longer function, and you will receive a warning before you proceed.

There are two ways to view and work with a cube:

  • Logical view (default view)

  • Physical view

You can maintain the logical view of a semantic model to support business requirements and tune the physical view to support optimization requirements. The logical view shows all calculated measures and members.

See Physical view for more details. 

Partition Strategy 

It is a flexible means of managing cubes, especially large cubes. It improves semantic model scalability by keeping the data structure small. You can create, replace or drop partition. 

See Partition strategy for more details. 

Aggregation Strategy 

Aggregates are precalculated summaries that improve query response time by preparing some answers before questions are asked. Kyvos uses query history and builds over time to create an aggregation strategy. You get system recommendations (see Semantic Model recommendations )for a semantic model based on query pattern and data pattern analysis. 
See Using aggregates for more details. 

Cache Strategy 

The cache for a semantic model is gradually populated when a semantic model is browsed. Kyvos allows you to automate the process of cache population of semantic models to reduce the query response time. In the Auto Cache Strategy section of the Refine page, you can specify Cache rules for: 

  • A single cube

  • Historical queries

  • Types of queries to cache 

Additionally, you can specify a cache build schedule for specific cubes. 

See Setting up and using cache rules for more details. 

Properties

Properties are organized into groups. Errors can be easily identified and visible and you can click the group to see the details. 

Kyvos specifies three modes for properties:

  • Default

  • Inherited

  • Modified

See Using cube properties for more details. 

Refine model page 

image-20240702-043706.png
Aura tab
summaryProcess Model
paramsJTdCJTIydGl0bGUlMjIlM0ElMjJQcm9jZXNzJTIwTW9kZWwlMjAlMjIlN0Q=

After refining the cube, you can build a cube. Kyvos allows you to specify the type of build for the cube: 

  • Full data process  

  • Incremental data process  

  • Test data process  

  • Update aggregates 

To schedule semantic model processes, see Scheduling semantic model processes for more details. 

To see different semantic model process types, see Semantic model process types for more details. 

Kyvos supports building semantic models on both on-premise (Hadoop) and Cloud (Amazon, Azure, and GCP) platforms. You can also build semantic models on a Snowflake, Redshift, or BigQuery source.

Parameter/Field

Description and Topic Reference

Full data process  

Creates a full, incremental, or test data process and update aggregates.

Incremental data process 

Updates only the latest changes to an existing semantic model. 

Test data process  

Builds the semantic model on the sample data. 

Update aggregates 

Updates only the aggregates in a semantic model to improve query time. 

other process jobs

Specify other build jobs such as Drop Partition, Cache Build or Data Profile 

Job Summary 

After the process job is completed, the status is displayed as Success or Failed on the semantic model designer and the Job summary .

Semantic model process page 

image-20240702-044008.png

...